4.1 Translations

Vector (\overrightarrow{BC})	
Measurement with and (size)	
Represented by an	
Component form $\langle _ , _ , _ \rangle$ $\overrightarrow{BC} = \langle _ , _ \rangle$	
Name the vector and write its component form	
	K
	B

Transformation

or	a figure
Original called	(i.e. ⊿ABC)
New called	(i.e. <i>∆A'B'C'</i>)

Translation

_____ every point the same _____ in the same _____

 $(x, y) \rightarrow _$

Where ______ is the translation _____

The vertices of Δ LMN are L(2, 2), M(5, 3), N(9, 1). Translate Δ LMN using vector (-2,6).

Write a rule for the translation of ΔPQR to $\Delta P'Q'R'$.

Geometry 4.1

Name: _

Draw $\triangle RST$ with vertices R(2, 2), S(5, 2), and T(3, -2). Find the image of each vertex after the translation $(x, y) \rightarrow (x + 1, y + 2)$. Graph the image using prime notation.

_						
			,			

Rigid Motion

Transformation that preserves ______ and ______.

A ______ transformation

Translation Theorem

A translation is a _____

Composition of Transformations

_____ or _____ transformations ______ into a _____ transformation

Composition Theorem

A composition of two (or more) ______ is a _____.

Translation: $(x, y) \rightarrow (x - 1, y + 4)$ **Translation:** $(x, y) \rightarrow (x + 4, y - 6)$

Graph \overline{RS} with endpoints R(-8, 5) and S(-6, 8). Graph its image after the composition.

Assignment: 172 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 42, 43, 44, 48, 52 = 20

4.2 Reflections

	p /
Transformation that uses a line like a to an	
That line is called	
• <i>P</i> and <i>P</i> ' are the same from the of	· · · ·
• The line connecting <i>P</i> and <i>P</i> ' is to the line of	ir m
Traph a reflection of ΔABC where $A(1, 3)$, $B(5, 2)$, and $C(2, 1)$ in the line $x = 2$.	
Coordinate Rules for Reflections	
• Reflected in <i>x</i> -axis: $(a, b) \rightarrow$	
• Reflected in <i>y</i> -axis: $(a, b) \rightarrow$	
• Reflected in $y = x$: $(a, b) \rightarrow$	
• Reflected in $y = -x$: $(a, b) \rightarrow$	
Reflection Theorem	
A reflection is a	
Graph $\triangle ABC$ with vertices $A(1, 3)$, $B(4, 4)$, and $C(3, 1)$. Reflect $\triangle ABC$ in the lines	
y = -x and $y = x$.	
	┥┼┼┼┼┼┼┼

Glide Reflection •followed by over a line to
The vertices of $\triangle ABC$ are $A(3, 2), B(-1, 3), \text{ and } C(1, 1)$. Find the image of $\triangle ABC$ after the glide reflection. Translation : $(x, y) \rightarrow (x, y - 4)$ Reflection : Over y-axis
Line symmetry • The figure can be to by a • The line of reflection is called • tend to that symmetry is
How many lines of symmetry does the object appear to have?
Assignment: 180 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 45, 49, 51, 54, 55 = 20

Angle of

Name:

- Figure is ______ about a ______ called _____ •
- The amount of _____ is _____ •

Rotation Theorem

A rotation is a

Geometry 4.3

Draw a rotation of $\triangle ABC$ about *P*.

- 1. Draw a segment from *A* to *P*.
- 2. Draw a ray to form a 120° angle with \overline{PA}
- 3. Draw A' so that PA' = PA
- 4. Repeat steps 1-3 for each vertex. Draw $\Delta A'B'C'$.

Draw a 50° counterclockwise rotation of ΔDEF about *P*.

Rotational Symmetry

- The figure can be ______ to itself by a ______ of _____ or ____ about the ______ of the figure
- The center of rotation is called the _____

Does the figure have rotational symmetry? What angles?

Assignment: 188 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 40, 42, 43, 46, 47 = 20

4.4 Congruence and Transformations

Congruent (≅)	
Exactly the sameand	
Identify any congruent figures in the coordinate plane. Explain.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Congruence Transformation	
Transformation with ≅	
Describe a congruence transformation that maps quadrilateral <i>ABCD</i> to quadrilateral <i>PQRS</i> .	$\begin{array}{c c} & y & P & Q \\ \hline & 2 & y & P & Q \\ \hline & -2 & 5 & x \\ \hline & D & A & R \\ \hline & A & R \\ \hline & & 0 & 0 \\ \hline & & -6 & B \\ \hline & & 0 & 0 \\ \hline \end{array}$

Reflections in Parallel Lines Theor	em		
If lines k and m are, then a	in	followed by a reflection	n in is the same as a
If P" is the image of P, then PP'' is to k and PP" =where d is the	<i>m,</i> and bety	ween k and m	
Use the figure below. The distance betwee	In line k and m	is 1.6 cm.	d - d
1. The prennage is reflected in find	e k, then in ine	<i>m</i> . Describe a single transit	of mation that maps the blue lighte to the
2. What is the distance from <i>P</i> and	P"?		ţ ^k ↑ ^m

Reflections in Intersecting Lines Theorem							
If lines k and m	_ at point <i>P</i> , then a	_ in	_ followed by a reflection in	_ is the same as a			
about point P.							
The is, where x° is the measure of the or angle formed k and m.							

In the diagram, the preimage is reflected in line *k*, then in line *m*. Describe a single transformation that maps the bottom right figure to the top left.

Assignment: 196 #2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 26, 28, 35, 36, 42, 46, 49, 50 = 20

4.5 Identify and Perform Dilations

Draw and label ΔRST , then construct a dilation of ΔRST with R as the center of dilation and a scale factor of 3.

1. Draw $\triangle RST$, then draw rays \overrightarrow{RS} and \overrightarrow{RT}

2. Using a ruler, measure RS. Multiply by the scale factor. Using the ruler mark this length RS' on \overrightarrow{RS} . Repeat for the other rays.

3. Draw $\Delta R'S'T'$

You are using a magnifying glass that shows the image of an object as three times the object's actual size. Determine the actual length of a spider when the image of the spider seen through the magnifying glass is 6.75 centimeters long.

Assignment: 204 #2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 24, 26, 28, 34, 38, 50, 52, 55, 56, 59 = 20

4.6 Similarity and Transformations

Similar figures

•

• Same _____; different _____

Similarity Transformation

• _____ or

_____ of _____ and another transformation

Graph $\triangle ABC$ with vertices A(12, -6), B(0, -3), and C(3, -9) and its image after the similarity transformation. **Reflection:** in the *y*-axis

Dilation: $(x, y) \rightarrow \left(\frac{1}{3}x, \frac{1}{3}y\right)$

Assignment: 211 #2, 4, 6, 8, 10, 13, 14, 16, 17, 19, 21, 22, 23, 24, 28 = 15